Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений icon

Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений



НазваниеУчебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений
страница7/48
Дата конвертации05.05.2013
Размер11 Mb.
ТипУчебник
скачать >>>
1   2   3   4   5   6   7   8   9   10   ...   48

В таблицах случайных чисел все числа включены в таблицу слу­чайным образом. Единицам совокупности присваивают порядковые номера. В таблице выбирают любую начальную точку и, двигаясь в произвольном направлении и произвольно меняя направление дви­жения, выбирают необходимое количество номеров из числа присво­енных, равное заранее установленному объему выборки.

Если мы имеем, скажем, популяцию (т.е. генеральную сово­купность) из 1507 элементов и хотим спроектировать выборку из 150, мы можем выбирать любые четыре смежных столбца в таб­лице случайных чисел. Каждый раз, когда будет появляться чис­ло от 0001 до 1507, мы будем считать, что оно обозначает номер отбираемого элемента. Если число появляется более чем один раз, этот номер игнорируется после первого раза. Если мы начнем с первых четырех столбцов в табл. 2.1, спускаясь по столбцам, то в выборку будут включены элементы под номерами 0799,1016,0084, 480 и 1306. Поскольку мы не стремимся умышленно отыскать определенное число, мы можем начать с любого места таблицы и использовать любую систему для движения по таблице.

Сегодня таблицу случайных чисел могут заменить машинные устройства, например компьютер, снабженный специальной про­граммой. Их называют генераторами случайных чисел. При теле­фонном интервьюировании компьютер, имеющий генератор слу­чайных чисел, может подавать на экран случайным образом ото­бранные телефонные номера.

2.4.2. Систематический отбор

Систематический отбор является вторым по научной значимо­сти, но первым по популярности употребления видом простого случайного отбора. Его называют еще механическим отбором и считают упрощенным вариантом простого случайного отбора.

100

Примером служат разного рода квартирные выборки: выби­раются улицы, на которых интервьюер проводит квартирный оп­рос. Квартиры выбираются по определенной схеме (крайняя квартира справа от лестницы на последнем этаже первого подъез­да и т.д.).

Если под рукой таблицы случайных чисел нет, а генсовокупность относительно невелика14, то можно воспользоваться алфавитным списком, например, персонала предприятия (картотека всегда есть в отделе кадров) или избирательного участка (при опросе по месту жительства). Процедура систематического отбора проста: количе­ство единиц генеральной совокупности, предположим 2000 работ­ников предприятия, делится на количество анкет, скажем 200, и определяется шаг выборки. Он предполагает, что, начиная с любо­го номера из списка, опрашивается каждый десятый (2000:200 = 10). В формализованном виде данная процедура выглядит так. Из про­нумерованного списка через равные интервалы £ отбирается задан­ное число респондентов. При этом шаг выборки к рассчитывается по простой формуле:




где ^ N— численность генеральной совокупности, п — численность выборочной совокупности.

Таким образом, шаг выборки, а его еще называют «интервалом скачка» или просто «интервалом», — это математический показа-тель, рассчитанный как отношение объема генеральной совокуп-ности к объему выборки. Он показывает, сколько номеров в спис-ке фамилий людей, вошедших в генеральную совокупность, надо пропустить (через сколько перешагнуть), чтобы в итоге получить список выборочной совокупности. Буквально шаг выборки озна-я чает расстояние между соседними фамилиями респондентов, из меренное количеством отбракованных фамилий из списка гене-ральной совокупности (рис. 2.3).

101

Другой пример. Предположим, что нам нужно спроектировать выборку численностью 100 из списка 5000 студентов какого-то вуза. Если мы намерены использовать систематическую выборку, то должны вначале рассчитать интервал выборки делением числа элементов в списке на размер выборки. В данном случае, разде­лив 5000 имен на требуемый размер выборки 100 ед., мы получим интервал (шаг) выборки 50. Так что мы будем систематически двигаться по списку и отбирать каждого пятидесятого студента (отобрав таким образом 100 имен). Определение того места в спис­ке, с которого мы начнем, проводится случайным образом, по таблице случайных чисел (это называется случайным стартом). Таким образом, если случайно выбрана точка старта под номером 31, то в выборку будут включены студенты, стоящие под номера­ми 31, 81, 131, 181 и т.д.



Итак, в основу систематической выборки положены не веро­ятностные процедуры, а алфавитные списки, картотеки, схемы, которые обеспечивают равновероятное попадание в выборку всех единиц генеральной совокупности.

Несмотря на свои преимущества, систематическая выборка мо­жет иногда иметь своим результатом предубежденную выборку. Такая ситуация возникает, например, когда элементы размещены в списке, ранжированном по каким-то характеристикам. В этой ситуации определение места начала случайного отбора будет вли­ять на средние характеристики всей выборки. Например, если сту­денты расставлены в списке в соответствии со средним оценоч­ным баллом от высшего к низшему, систематическая выборка, включающая студентов, стоящих в списке под номерами 1,51,101, будет иметь более низкий средний балл, чем выборка, включаю-Щая студентов под номерами 50, 100 и 150. Каждая новая выбор­ка будет давать другой средний балл, который представляет собой предубежденную картину студенческой популяции.

102

2.4.3. Районированная и стратифицированная выборки

Если генеральная совокупность велика, а такое в эмпиричес­ком исследовании случается очень часто, то приходится разделять обследуемую совокупность на более или менее однородные час­ти, а затем осуществлять отбор единиц внутри этих частей. Такую раздробленную на части выборку правильнее всего было бы на­зывать расслоенной. Однако в русском языке подобный термин не утвердился, видимо, как не соответствующий нормам правиль­ного произношения.

Поскольку в отечественной социологии очень много иностран­ных слов — и это правильно с точки зрения унификации научной терминологии, приведения ее к международным стандартам, — то слову «расслоенная» попытались найти эквивалент. В числе пре­тендентов оказались две наилучшие кандидатуры, а именно тер­мины «районированная» и «стратифицированная».

В русском языке первое слово явно тяготеет к географическо­му языковому ареалу и обозначает территориальную зону. По­скольку генеральную совокупность, особенно очень большую, например население всей страны, можно разбивать в том числе и по региональному признаку, в отечественной литературе утвердил­ся термин «районированная выборка». Но наряду с тем генераль­ную совокупность можно расслаивать и по стратам (полу, возрас­ту, доходам и т.д.), получая в качестве критерия уже не географи­ческий район, а социальную группу.

В итоге сложилась практика различения двух разновиднос­тей расслоенной выборки. Если деление происходит по стратам (социальным группам), то выборку именуют стратифицирован­ной, если по экономико-географическим районам, то —райони­рованной.

В литературе (да и в маркетинговой практике) два термина — районированная и стратифицированная выборки — нередко счи- таются эквивалентными. Происходит это потому, что в основе той и другой лежит одна и та же процедура расслоения, а расслаивать в социологии можно двояко: либо по социальным группам (тогда речь идет о социальной структуре и стратификации как ее част-ном виде), либо по географическим районам. Когда объединяют оба понятия в одно, как правило, дают обобщающее определение подобной выборки, например, такое:

^ Районированная выборка — вид выборки, при котором отбору предшествует процедура районирования (расслоения, стратифика­ции), т.е. разделения исходной совокупности на статистически или качественно однородные подсовокупности, называемые слоями,

103

стратами или типичными группами. Отбор единиц, который мо­жет носить как случайный, так и направленный характер, произ­водится независимо из каждого слоя, поэтому районированная выборка равносильна ряду выборок, извлеченных из меньших со­вокупностей-страт15.

В этом определении исходное понятие «районированная выбор­ка» без ущерба для дела можно заменить на «стратифицирован­ную выборку». Таким образом, одинаково правильно будет как разделять одну выборку на две самостоятельные разновидности, районированную и стратифицированную, так и подавать их как единое целое. За единство двух приемов выступает практика со­циологических исследований. Оказывается, в крупномасштабных проектах социологи начинают с районированной выборки, а за­тем переходят на стратифицированную. Так, например, в обсле­дованиях Центра «Социо-Экспресс» Института социологии РАН в основе построения районированной выборки лежат десять эко­номико-географических зон, в каждой из которых выделяются крупные города (численностью свыше 500 тыс. населения), сред­ние города (50-500 тыс.), малые города (до 50 тыс.) или поселки городского типа, а также сельские населенные пункты. Внутри отобранных городов респондентов отбирают случайным методом. Репрезентативность контролируется по региональным пропорци­ям численности населения, пропорциям между городским и сель­ским населением, пропорциям между населением указанных ти­пов населенных пунктов16.

В международной практике не используется русское слово «район» как географическая зона (ареал, регион, часть террито­рии), поэтому здесь не встретишь и термина «районированная выборка». Вместо него употребляют термин «стратифицированная выборка», подразумевая, что, разбивая единое целое на части, не обязательно точно указывать, что они собой представляют — груп­пы или районы.

В таком случае стратифицированная выборка (stratified sampling) — вероятностная выборка, обеспечивающая равномерное представи­тельство в выборочной совокупности различных частей, типов, групп и слоев населения.

В английском языке слово «стратификация» мало чем отлича­ется от слов «расслоение», «разделение», «разбиение». Это социо­логи придали стратификации социальный смысл, а в геологии, 104

откуда мы позаимствовали термин, стратификация означает вер­тикальное расслоение земли на однородные пласты. Ни классов, ни доходов, ни социальных групп здесь нет.

Надо учитывать и другой нюанс. Дело в том, что в зарубежных словарях, прежде всего американских и главным образом ведущих, все, что связано с территориальным признаком, в том числе и рас­слоение по районам, относится к квотной выборке. К примеру, в знаменитом Оксфордском словаре социологии на термин «stratified sampling» стоит отсылка: см. sampling. Открываем с. 576—577 и чи­таем о том, что в случае стратифицированной вероятностной {random) выборки речь идет о разбиении совокупности на подгруп­пы, т.е. страты, например мужчин и женщин, а о районированной выборке в нашем понимании не говорится ни слова. Близкий к районам термин «local areas» употребляется Гордоном Маршаллом (а он считается знатоком в этом деле) только в связи: 1) с первой стадией многоступенчатого отбора, 2) с квотной выборкой17.

Возвращаясь от лингвистических тонкостей к методическим, подчеркнем вот еще что: отбор единиц, который может носить как случайный, так и направленный характер, производится незави­симо из каждого слоя или района, поэтому районированно-стра-тифицированная выборка (если можно так выразиться) равносиль­на ряду выборок, извлеченных из меньших совокупностей-страт (районов).

^ Стратифицированная случайная выборка (в узком значении) основана на выборке по каждой страте отдельно. Это повышает точность результатов либо уменьшает время, силы и стоимость исследования, допуская меньшие размеры выборки при заданном уровне точности. Например, известно, что бедность наиболее ча­сто встречается среди пожилых, безработных и в монородительс­ких семьях. Исследуя проблемы бедности, можно с равным успе­хом выбрать в качестве объекта любую из трех страт. В отобран­ных районах или стратах выбор единиц обследования проводится по вероятностному методу.

Основная цель всякого расслоения — повышение точности вы­борочных оценок. Слои выделяются таким образом, чтобы дис­персия изучаемых переменных внутри слоев была значительно меньше, чем между ними. При расслоении вариация между сло­ями не входит в среднюю ошибку выборки, а компенсируется са­мой процедурой выделения слоев. Поэтому расслоение позволяет5 добиться более высокой степени точности оценок по сравнению

105

с простым случайным отбором. Если каждый слой представляет собой статистически однородную группу, то для любого из них даже выборка малого объема позволит получить достаточно точ­ные оценки, которые, будучи объединены, дадут хорошую оцен­ку для всей совокупности.

Различают стратификацию одномерную и многомерную в за­висимости от того, один или несколько признаков положены в основу разделения совокупности. Эти признаки должны иметь тесную связь с изучаемыми переменными, от их выбора в высо­кой степени зависит эффективность расслоения.

2.4.4. Гнездовая выборка

Противоположность районированной и стратифицированной выборке составляет гнездовая выборка.

Гнездовая выборка — вид выборки, при котором отбираемые объекты представляют собой группы или гнезда (кластеры) более мелких единиц. Гнездом называют единицу отбора высшей ступе­ни, состоящую из более мелких единиц низшей ступени. В выборку могут быть включены как все единицы низшего уровня, так и их часть. Число единиц, образующих гнездо, называют его размером.

В качестве гнезд выступают населенные пункты, районы, дома, подъезды, предприятия, цехи, бригады.

Гнездовой отбор обладает большими организационными пре­имуществами — проще осуществлять отбор и обследование не­скольких компактных групп, чем десятков или сотен отдельных единиц. Технические преимущества гнездового отбора особенно ощутимы при построении территориальной выборки. Отбор не­большого числа территориальных сегментов (населенных пунктов, районов, жилых кварталов и т.п.), затем выборочный или сплош­ной опрос проживающего в них населения существенно уменьша­ют стоимость исследования и сроки проведения.

Процедурно такой метод применить легче, чем вероятностный либо районированный. Проблемы, которые возникают здесь, свя­заны с определением величины гнезда, количеством гнезд, ко­торые надо обследовать, их размещением в генеральной совокуп­ности.

Основные рекомендации при выборе гнезд сводятся к тому, чтобы различия между гнездами были бы по возможности более неоднородными. Это правило прямо противоположно основному принципу расслоения, в соответствии с которым выигрыш в точ­ности тем больше, чем более однородными будут выделенные

106

слои. Другая рекомендация касается выбора размера гнезд: боль­шое число малых гнезд предпочтительнее малого числа крупных18.

^ Пример стратифицированной выборки. Первое исследование по уровню жизни населения проведено в конце 60-х гг. XX в. груп­пой исследователей (под рук. Н.М.Римашевской) из Центрально­го экономико-математического института АН СССР в городе Та­ганроге19. Проект назван Таганрог-1. Исследование в конце 70-х гг. названо Таганрог-2, а в 1988-1989 гг. названо Таганрог-3. Это го­род на юге России с населением около 300 тыс. человек. Семья — это группа лиц, живущих вместе на одной жилой площади, веду­щих совместное хозяйство и находящихся в отношениях родства, брака или опекунства. В 1989 г. в Таганроге около 10% населения имели душевые доходы ниже 75 руб., т.е. были бедными. Основой выборки служили данные о структуре жилого фонда и числе про­живающих. На первом этапе город поделен на районы, на втором вычислялись доли разных типов жилья с разным уровнем его оп­латы и коммунальными удобствами. На третьем этапе жилой фонд делился по числу квартир в домах. Для каждой страты — района, типа застройки, размера жилья — заводился лист с адресами и чис­лом квартир. Так планировалась выборка и организовывался отбор домохозяйств в Таганроге-2. Использовалась трехуровневая проце­дура территориального стратифицированного отбора.

^ Пример районированной выборки. Эмпирической основой рабо­ты «Динамика социальной структуры красноярского региона» явились социологические исследования, проведенные сотрудни­ками Красноярского государственного университета под руковод­ством проф. В.Г.Немировского: 1) опрос 1488 жителей Краснояр­ского края в мае 1991 г.; 2) опрос 1240 жителей края в июне 1992 г.; 3) опрос 1050 жителей края в мае 1995 г.; 4) опрос 1820 жителей края в апреле 1998 г.; 5) опрос 1460 жителей края в январе 1999 г. Каждое исследование проводилось по общекраевой выборке ме­тодом формализованного интервью. Использовалась многоступен­чатая, районированная выборка, сформированная в соответствии с половозрастной структурой населения края. В процессе постро­ения выборки на первой ступени генеральная совокупность дели­лась на ряд слоев в зависимости от места жительства респонден­та: в городской (в крае 27 городов) и сельской местности (послед­няя подразделяется на 41 административный район); размера населенного пункта: жители крупного города (Красноярск), сред-

107

него города, малого города, сельскохозяйственных районов, рай­онов с преобладанием лесной промышленности. Затем осуществ­лялся типологический отбор районов и городов в каждом из выделенных слоев. На второй ступени отбора проводилось райо­нирование уже внутри населенных пунктов или сельских районов. Так, в городах выделялись административные, промышленные, «спальные» районы, места индивидуальной застройки. В сельской местности признаком расслоения служил размер населенного пун­кта — райцентр, село, деревня. В следующей ступени проводился квотный отбор. В рамках конкретной территориальной зоны ан­кетер должен был опросить определенное число лиц с заданными социально-демократическими характеристиками20.

При гнездовой выборке (которую иногда называют также клас­терной21) определяются группы или гнезда элементов и составля­ются их списки. Затем из этого списка единиц выборки проекти­руется выборка. Потом только для этих единиц идентифицируются и отбираются элементы. Возьмем, например, составление опрос­ного списка на 1000 человек (размер выборки) для изучения об­щественного мнения населения города. Поскольку мы не распо­лагаем списком всех жителей города, мы могли бы начать с полу­чения карты города, чтобы определить все его кварталы и составить их список. Этот список кварталов становится остовом выборки, из которого случайным образом или систематически проводится выборка кварталов. Затем будет спроектирована вы­борка жилых домов из каждого квартала. Затем будет установле­на связь с семьями, проживающими в отобранных домах, и в каж­дой семье кто-то будет проинтервьюирован для опросного листа. Предположим, что имеется 500 кварталов и из них случайным образом отобрано 25. В этих 25 кварталах идентифицированы 4000 семей. Связь будет установлена с четвертью этих семей, потому что требуется выборка из 1000 индивидов. Эти 1000 семей будут отобраны случайным или систематическим образом.

^ Пример гнездовой выборки. Исследование Т. Б. Бердниковой и МАЛямина «Социальные последствия трансформации собствен­ности»22, проведенное в 1999 г., охватывало 500 респондентов в Белгородском, Губкинском, Корочанском и Ровеньском районах Белгородской области. Отбор респондентов осуществлялся мето­дом гнездовой двухступенчатой выборки. В качестве гнезд (клас-

108

теров) или групп выделялись районы Белгородской области. На первом этапе проведен отбор гнезд в соответствии с требования­ми минимальных различий между ними и максимальной неодно­родности составляющих их единиц. В рамках самих гнезд отбор респондентов осуществлялся по методу многоступенчатой квот­ной выборки, репрезентативной по отношению к социально-демографической структуре работников предприятий различных форм собственности. Квотными признаками выступали: пол, воз­раст, место проживания. Опрос руководителей проводился по той же методике, но квотными признаками выборки в данном случае были: пол, возраст, образование, стаж работы. Отбор респонден­тов для экспертного опроса проводился по методу случайной вы­борки по следующим критериям: род деятельности, наличие спе­циального опыта, участие в приватизации и акционировании.

^ Пример кластерной выборки. В исследовании, проведенном B.C. Журавлевым23 в 1999 г. в школах и училищах Екатеринбур­га была использована многоступенчатая выборка с применением на первой ступени кластерной выборки. Были отобраны учебные заведения Екатеринбурга, находящиеся в «опасных» районах в не­посредственной близости от вокзалов, парков и лесопарков и т.д. Опрашивались учащиеся профессионального училища, школ и гимназии города. Внутри кластеров отбор стратифицировался. В каждом кластере опрашивалось по 100 респондентов. Генераль­ная совокупность насчитывает 80 тыс. человек. Объем выбороч­ной совокупности составил 500 человек, что достаточно для по­лучения репрезентативных данных, учитывая однородность гене­ральной совокупности и небольшой вариационный размах.

2.5. Методы невероятностной (неслучайной) выборки

Неслучайная (невероятностная) выборка — это способ отбора единиц, при котором мы не можем заранее рассчитать вероятность попадания каждого элемента в состав выборочной совокупности, что, разумеется, не дает возможности рассчитать, насколько пра­вильна (репрезентативна) выборка. По этой причине предпочте­ние обычно отдается вероятностной выборке, хотя иногда по ус­ловиям исследования оказывается единственно возможным про­вести неслучайную выборку.

109

Таким образом, можно заранее сказать, что по содержательным критериям невероятностная (она же целевая и целенаправленная) выборка не хуже вероятностной, а может быть, и лучше. Ее недо­статки: невозможность установить степень репрезентативности и более высокая стоимость (с точки зрения затрат она обычно пре­восходит вероятностную на несколько порядков). Но есть и пре­имущества — более глубокое, качественное и всестороннее рас­крытие предмета по сравнению с вероятностной.

^ Известны следующие разновидности неслучайной выборки: квотная выбор­ка, метод снежного кома, метод основного массива, метод стихийного отбора.

Несомненно, принцип отбора единиц в неслучайной выборке отличается от традиционного. Рассмотрим, чем именно.

Как и для вероятностного способа отбора, основная цель не­случайного отбора состоит в получении совокупности, репрезен­тирующей изучаемый объект. Однако в отличие от вероятностной выборки статистические выводы обо всем множестве объектов в этом случае делать не совсем правомерно. Эти выводы могут с большей или меньшей степенью вероятности распространяться лишь на генеральную совокупность (которая не всегда совпадает с объектом исследования).

Выделяют два основных вида неслучайного отбора:

♦ направленный отбор (другие названия — целенаправленный, целевой, выбор по усмотрению);

♦ стихийный.

Направленный отбор характеризуется выбором единиц по ка­кому-либо заранее определенному принципу. Наиболее распрос­траненными формами направленного отбора считаются: выбор типичных объектов (методов типичных представителей), метод «снежного кома» и выбор квотами.

1   2   3   4   5   6   7   8   9   10   ...   48



Похожие:

Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconУчебник для вузов педагогическая психология под редакцией Н. В. Клюевой
Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconВ. Л. Васильев Аннотация Учебник
Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебника для студентов высших...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconУчебник нового века в. Н. Дружинин
Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебного пособия для студентов...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconА. В. Дмитриев
Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для студентов высших учебных заведений
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconУчебник Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по экономическим специальностям
Охватывает деятельность также и некоммерческих организаций. Таким образом, маркетинг – это деятельность организации в интересах ее...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconДорошев В. И. Введение в теорию маркетинга
Рекомендовано Министерством общего и профессионального образования Российской Федерации в качестве учебного пособия для студентов...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconТ. И. Калмыкова г. С. Морозова виноградарство Под ред. К. В. Смирнова Допущено Управлением высшего и среднего специального образования Государственного агропромышленного комитета СССР в качестве учебник
Допущено Управлением высшего и среднего специального образования Государственного агропромышленного комитета СССР в качестве учебника...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconИсследование бессознательных источников
Рекомендовано в качестве учебного пособия для дополнительного образования Министерством образования Российской Федерации
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconУчебник для студентов высших учебных заведений по специальности 032401 «Реклама»
Данный учебник является первой попыткой отразить все дидактические единицы курса «Основы рекламы» в соответствии с государственным...
Учебник Допущено Министерством образования Российской Федерации в качестве учебника для студентов высших учебных заведений iconИ. С. Нарский Горфункель А. X
Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов и аспирантов философских...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©gua.convdocs.org 2000-2015
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов