Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип icon

Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип



НазваниеТемы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип
Дата конвертации24.05.2013
Размер37.14 Kb.
ТипДокументы
скачать >>>



Темы для изучения


Момент инерции, вращающий момент, момент импульса, нутация.

Принцип



При незначительном смещении оси вращения свободного гироскопа наблюдается нутация. Исследуется зависимость между частотой нутации и частотой гироскопа для различных моментов инерции.

К гироскопу в карданном подвесе для прецессии прикреплены дополнительные гири.

Оборудование


Гироскоп Магнуса с пособием 02550.00 1

Секундомер, цифровой, 1/100 с 03071.01 1

Стробоскоп с цифровым индикатором 21809.93 1

Цель


  1. Определить зависимость частоты прецессии от вращающего момента и угловой скорости гироскопа.

  2. Определить зависимость частоты нутации от угловой скорости и момента инерции.



^

Замечание


Прилагается учебное пособие (128 стр.) с дополнительными описаниями экспериментов.

Установка и ход работы



Соберите гироскоп как показано на Рис. 1. Прикрепите на оси или диске (роторе) дополнительные гири. Диск должен находиться в положении безразличного равновесия во всех пространственных направлениях и оставаться неподвижным. Для этого отрегулируйте его при помощи двух скользящих гирек. Для определения частоты прецессии расположите дополнительные гири на оси гироскопа и слегка завинтите их. При помощи двух дополнительных гирь можно получить три комбинации (), () и ().

При помощи пусковой рукоятки приведите гироскоп в движение. Измерьте угловую скорость стробоскопом, а частоту прецессии – секундомером. Рекомендуется измерить двойную частоту стробоскопом и половину периода прецессии секундомером.


Снимите дополнительные гири. Приведите гироскоп в движение. Рукой слегка коснитесь оправы, чтобы вызвать нутацию.


Частота нутации измеряется стробоскопом. Определите частоту нутации для различных скоростей гироскопа и при различных дополнительных гирях (расположенных симметрично относительно друг друга).





Рис. 1: Гироскоп в карданной оправе.








Рис. 2: Подвижная система координат для гироскопа.

^

Теория и расчет


В инерциальной системе отсчета уравнение движения твердого тела с моментом импульса , к которому прикладывается вращающий момент , имеет вид




Момент импульса гироскопа можно разложить на составляющую по оси симметрии , выходящей только из ротора, и остаток :


.


При преобразовании уравнения движения для подвижной системы координат , которая вращается с угловой скоростью с началом в точке центра масс, а оси проходят по внутренней рамке гироскопа и оси симметрии (см. Рис 2) получаем:




Возьмите производную по времени во вращающейся системе (отмечено пунктиром). Если момент импульса ротора по оси симметрии постоянный:

,

где момент инерции ротора лежит вдоль оси симметрии, а - угловая скорость и соблюдается условие

,

получаем основное уравнение для гироскопа:

. (1)




Рис. 3: Зависимость частоты прецессии от частоты гироскопа с различными дополнительными гирями.


Из выражения (1) получаем независимые уравнения для компонентов (1), характеризующие прецессию и нутацию:

,


.


( не учитывается для гирь, расположенных на оси ротора.)

Введя эйлеровы углы и , получим:





,

где - масса гири, которая расположена на расстоянии от центра и вызывает благодаря ускорению свободного падения вращательный момент.











Рис. 4: Зависимость частоты нутации от частоты гироскопа с различными дополнительными гирями


Если частота прецессии невелика по сравнению с частотой ротора , то




Этим условием можно пренебречь:




.


При начальных условиях

,

имеем:



.


При начальном условии

,

частота прецессии при постоянном равна

. (2)

Используя функцию

,

из графика на Рис. 3 и выражения (2), получаем показатели



Если коснуться рукой оси симметрии гироскопа, то при

,

ось будет двигаться с частотой нутации

. (3)

Используя функцию

,

из графика на Рис. 4 и выражения (3), получаем компоненты











Похожие:

Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения Момент инерции, вращающий момент, угловой момент, прецессия, нутация. Принцип
Определяется момент инерции гироскопа при измерении углового ускорения, возникшего под действием вращающих моментов различных значений....
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
Абсолютно твердое тело, момент инерции, ось вращения, крутильные колебания, жесткость пружины, угловой коэффициент упругости, момент...
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
Угловая скорость, вращательное движение, момент инерции диска, момент инерции стержня, момент инерции материальной точки
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconLeр 30 -00 Темы для изучения
Модуль сдвига, угловая скорость, вращающий момент, момент инерции, модуль кручения
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
Потенциальная и кинетическая энергия, энергия вращения, момент инерции, неупругое соударение, сохранение импульса и углового импульса,...
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
Пружина, маятник, жёсткость пружины, вращающий момент, колебания, угловая скорость, угловое ускорение, частота
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconLeр 03 -00 Темы для изучения
...
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
Твердое тело, момент инерции, центр тяжести, ось вращения, крутильное колебание, жесткость пружины, возвращающая сила
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
...
Темы для изучения Момент инерции, вращающий момент, момент импульса, нутация. Принцип iconТемы для изучения
Колесо Максвелла, энергия поступательного движения, энергия вращательного движения, потенциальная энергия, момент инерции, угловая...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©gua.convdocs.org 2000-2015
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов